On the cancellation of modules in direct sums over dedekind domains
نویسندگان
چکیده
منابع مشابه
Projective Modules over Dedekind Domains
In these notes we will first define projective modules and prove some standard properties of those modules. Then we will classify finitely generated projective modules over Dedekind domains Remark 0.1. All rings will be commutative with 1. 1. Projective modules Definition 1.1. Let R be a ring and let M be an R-module. Then M is called projective if for all surjections p : N → N ′ and a map f : ...
متن کاملPrimary Decomposition of Modules over Dedekind Domains Using Gröbner Bases
In [6] was proved that if R is a principal ideal domain and N ⊂ M are submodules of R[x1, . . . , xn], then the primary decomposition for N in M can be computed using Gröbner bases. In this paper we extend this result to Dedekind domains. The procedure that computed the primary decomposition is illustrated with an example.
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولDirect Sum Cancellation for Modules over One-dimensional Rings
Let R be a one-dimensional Noetherian domain with finite normalization R. In the eighties the second-named author and S. Wiegand developed a mechanism for studying the cancellation problem for finitely generated torsion-free R-modules. The key idea, described in [Wie84] and [WW87], is to represent a given torsion-free module M as a pullback: M −→ RM ↓ ↓ M/fM −→ RM/fM ∗This research was initiate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae (Proceedings)
سال: 1971
ISSN: 1385-7258
DOI: 10.1016/s1385-7258(71)80022-7